首 页
学院概况
  • 学院简介
  • 现任领导
  • 机构设置
  • 委员会
师资队伍
  • 正高名录
  • 副高博士
  • 研究生导师
本科生教学
  • 专业建设
    • 专业设置
    • 重点专业
  • 培养方案
  • 教学大纲
  • 教学信息
研究生培养
  • 研究生招生
科研服务
  • 科研项目
  • 学科概况
  • 科研成果
  • 嵊州研究院
  • 诸暨研究院
  • 上虞研究院
招生就业
  • 本科生招生
  • 本科生就业
  • 研究生招生
党建工作
资源中心
  • 学院黄页
  • 表格下载
诚聘英才
  • 快捷导航
  • 学院新闻
    通知公告
    学生成果
  • 通知公告
  • 【学术报告】Multimodal sensing techniques and applications in wind turbines and ventilation

    2025-05-20  点击:[]

    报告题目:Multimodal sensing techniques and applications in wind turbines andventilation

    报告专家:Prof./Dr.NingChu

    报告时间:5月26日(周一)13:40-14:20

    报告地点:人工智能研究院(老行政楼北楼)311会议室


    报告人简介:

    Prof./Dr.Ning Chu is a professorate engineer, IEEE senior member, and vice-chairman of the Zhejiang Acoustic Society; Chief researcher with Zhejiang Shangfeng Special Blower Company Ltd., China. He received B.S. degree in information engineering from the National University of Defense Technology, Changsha, China in 2006, and the M.S. and Ph.D. in automatic, signal image processing from the Paris-Saclay University, France in 2010 and 2014, respectively, and the postdoc at EPFL Switzerland.

    His research interests are acoustic source imaging, infrared detection and Bayesian inference in machine fault prognosis. He has invented“Industrial Lung System”for green ventilation equipment, reported by CCTV2 in 2022, selected into the list of Zhejiang industrial Internet platform, and best cases of China intelligent manufacturing. In recent 5 years, he published more than 24 top journal papers and own 31 China invention patents, presided 3 national and provincial research projects.

    报告摘要:

    In this presentation, we will show some challenging problem in modern manufacture of high-end equipment during its life-cycle health management. Then multimodal sensing techniqueswill be presented in details,andvariousapplicationswill be give forwind turbines andventilation system. Finally, we would like to inspire the audience and students to think deeply the bottleneck technology in AI algorithm, sensors network, diagnosis and prognosis for industry equipment digitization.



    上一条:【学术报告】Bayesian Physics-Informed Neural Networks for Linear Inverse Problems: Application to Infrared Image Processing
    下一条:【学术报告】Crop protection and breeding optimization based on rotating-blade drone

    【返回】